Qeshm Virtual Air has purchased first “Super Jumbo” Aircraft for “IKA” Airport Base

The Airbus A380 is a double-deck, wide-body, four-engine jet airliner manufactured by European Union manufacturer Airbus.[4][5][6] It is the world’s largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it. It was initially named Airbus A3XX and designed to challenge Boeing’s monopoly in the large-aircraft market. The A380 made its first flight on 27 April 2005 and entered commercial service in 25 October 2007 with Singapore Airlines.

The A380’s upper deck extends along the entire length of the fuselage, with a width equivalent to a wide-body aircraft. This gives the A380-800’s cabin 550 square metres (5,920 sq ft) of usable floor space,[7] 40% more than the next largest airliner, the Boeing 747-8,[8] and provides seating for 525 people in a typical three-class configuration or up to 853 people in an all-economy class configuration. The A380-800 has a design range of 8,500 nautical miles (15,700 km), serving the second longest non-stop scheduled flight in the world, and a cruising speed of Mach 0.85 (about 900 km/h, 560 mph or 490 kt at cruising altitude).

As of September 2016, Airbus had received 319 firm orders and delivered 195 aircraft; Emirates is the biggest A380 customer with 142 ordered of which 83 have been delivered.[2] Thai Airways International, British Airways, Qantas, Asiana Airlines, Qatar Airways, Etihad Airways and Air France are other operators.


In mid-1988, Airbus engineers led by Jean Roeder began work in secret on the development of an ultra-high-capacity airliner (UHCA), both to complete its own range of products and to break the dominance that Boeing had enjoyed in this market segment since the early 1970s with its 747.[9] McDonnell Douglas unsuccessfully offered its smaller, double-deck MD-12 concept for sale.[10][11] Roeder was given approval for further evaluations of the UHCA after a formal presentation to the President and CEO in June 1990. The megaproject was announced at the 1990 Farnborough Air Show, with the stated goal of 15% lower operating costs than the 747-400.[12] Airbus organised four teams of designers, one from each of its partners (Aérospatiale, British Aerospace, Deutsche Aerospace AG, CASA) to propose new technologies for its future aircraft designs. The designs were presented in 1992 and the most competitive designs were used.[13]

In January 1993, Boeing and several companies in the Airbus consortium started a joint feasibility study of a Very Large Commercial Transport (VLCT), aiming to form a partnership to share the limited market.[14][15] This joint study was abandoned two years later, Boeing’s interest having declined because analysts thought that such a product was unlikely to cover the projected $15 billion development cost. Despite the fact that only two airlines had expressed public interest in purchasing such a plane, Airbus was already pursuing its own large plane project. Analysts suggested that Boeing would instead pursue stretching its 747 design, and that air travel was already moving away from the hub and spoke system that consolidated traffic into large planes, and toward more non-stop routes that could be served by smaller planes.[16]

The first completed A380 at the “A380 Reveal” event in Toulouse, France, 18 January 2005

In June 1994, Airbus announced its plan to develop its own very large airliner, designated the A3XX.[17][18] Airbus considered several designs, including an unusual side-by-side combination of two fuselages from its A340, the largest Airbus jet at the time.[19] The A3XX was pitted against the VLCT study and Boeing’s own New Large Aircraft successor to the 747.[20][21] From 1997 to 2000, as the East Asian financial crisis darkened the market outlook, Airbus refined its design, targeting a 15–20% reduction in operating costs over the existing Boeing 747-400. The A3XX design converged on a double-decker layout that provided more passenger volume than a traditional single-deck design,[22][23] in line with traditional hub-and-spoke theory as opposed to the point-to-point theory with the Boeing 777,[24] after conducting an extensive market analysis with over 200 focus groups.[25][26] Although early marketing of the huge cross-section touted the possibility of duty-free shops, restaurant-like dining, gyms, casinos & beauty parlours on board, the realities of airline economics have kept such dreams grounded.

On 19 December 2000, the supervisory board of newly restructured Airbus voted to launch an €8.8-billion programme to build the A3XX, re-christened as the A380,[27][28] with 50 firm orders from six launch customers.[29][30] The A380 designation was a break from previous Airbus families, which had progressed sequentially from A300 to A340. It was chosen because the number 8 resembles the double-deck cross section, and is a lucky number in some Asian countries where the aircraft was being marketed.[19] The aircraft configuration was finalised in early 2001, and manufacturing of the first A380 wing box component started on 23 January 2002. The development cost of the A380 had grown to €11-14[31] billion when the first aircraft was completed.


Diagram showing flow of aircraft part in western Europe. Land is white, sea is pale blue

Geographical logistics sequence for the A380, with final assembly in Toulouse

Major structural sections of the A380 are built in France, Germany, Spain, and the United Kingdom. Due to the sections’ large size, traditional transportation methods proved unfeasible,[32] so they are brought to the Jean-Luc Lagardère Plant assembly hall in Toulouse, France, by specialised surface transportation, though some parts are moved by the A300-600ST Beluga transport aircraft, which is also used in the movement of other Airbus model components.[33] A380 components are provided by suppliers from around the world; the four largest contributors, by value, are Rolls-Royce, Safran, United Technologies and General Electric.[25]

For the surface movement of large A380 structural components, a complex route known as the Itinéraire à Grand Gabarit was developed. This involved the construction of a fleet of roll-on/roll-off (RORO) ships and barges, the construction of port facilities and the development of new and modified roads to accommodate oversized road convoys.[34] The front and rear fuselage sections are shipped on one of three RORO ships from Hamburg in northern Germany to the United Kingdom.[35] The wings are manufactured at Broughton in North Wales, then transported by barge to Mostyn docks for ship transport.[36]

A380 components on a barge

In Saint-Nazaire in western France, the ship exchanges the fuselage sections from Hamburg for larger, assembled sections, some of which include the nose. The ship unloads in Bordeaux. The ship then picks up the belly and tail sections from Construcciones Aeronáuticas SA in Cádiz in southern Spain, and delivers them to Bordeaux. From there, the A380 parts are transported by barge to Langon, and by oversize road convoys to the assembly hall in Toulouse.[37] In order to avoid damage from direct handling, parts are secured in custom jigs carried on self-powered wheeled vehicles.[32]

After assembly, the aircraft are flown to Hamburg Finkenwerder Airport (XFW) to be furnished and painted. Airbus sized the production facilities and supply chain for a production rate of four A380s per month.[36]


A380 prototype on its maiden flight

Five A380s were built for testing and demonstration purposes.[38] The first A380, registered F-WWOW, was unveiled in Toulouse 18 January 2005.[39] It first flew on 27 April 2005.[40] This plane, equipped with Rolls-Royce Trent 900 engines, flew from Toulouse Blagnac International Airport with a crew of six headed by chief test pilot Jacques Rosay.[41] Rosay said flying the A380 had been “like handling a bicycle”.[42]

On 1 December 2005, the A380 achieved its maximum design speed of Mach 0.96, (its design cruise speed is Mach 0.85) in a shallow dive.[38] In 2006, the A380 flew its first high-altitude test at Bole International Airport, Addis Ababa. It conducted its second high-altitude test at the same airport in 2009.[43] On 10 January 2006, it flew to José María Córdova International Airport in Colombia, accomplishing the transatlantic testing, and then it went to El Dorado International Airport to test the engine operation in high-altitude airports. It arrived in North America on 6 February 2006, landing in Iqaluit, Nunavut in Canada for cold-weather testing.[44]

Flight test engineer’s station on the lower deck of A380 F-WWOW

On 14 February 2006, during the destructive wing strength certification test on MSN5000, the test wing of the A380 failed at 145% of the limit load, short of the required 150% level. Airbus announced modifications adding 30 kg (66 lb) to the wing to provide the required strength.[45] On 26 March 2006, the A380 underwent evacuation certification in Hamburg. With 8 of the 16 exits arbitrarily blocked, 853 mixed passengers and 20 crew exited the darkened aircraft in 78 seconds, less than the 90 seconds required for certification.[46][47] Three days later, the A380 received European Aviation Safety Agency (EASA) and United States Federal Aviation Administration (FAA) approval to carry up to 853 passengers.[48]

The first A380 using GP7200 engines—serial number MSN009 and registration F-WWEA—flew on 25 August 2006.[49][50] On 4 September 2006, the first full passenger-carrying flight test took place.[51] The aircraft flew from Toulouse with 474 Airbus employees on board, in a test of passenger facilities and comfort.[51] In November 2006, a further series of route-proving flights demonstrated the aircraft’s performance for 150 flight hours under typical airline operating conditions.[52] As of 2014, the A380 test aircraft continue to perform test procedures.[53]

Airbus obtained type certificates for the A380-841 and A380-842 model from the EASA and FAA on 12 December 2006 in a joint ceremony at the company’s French headquarters,[54][55] receiving the ICAO code A388.[56] The A380-861 model obtained its type certificate on 14 December 2007.[55]

Production and delivery delays

Initial production of the A380 was troubled by delays attributed to the 530 km (330 mi) of wiring in each aircraft. Airbus cited as underlying causes the complexity of the cabin wiring (98,000 wires and 40,000 connectors), its concurrent design and production, the high degree of customisation for each airline, and failures of configuration management and change control.[57][58] The German and Spanish Airbus facilities continued to use CATIA version 4, while British and French sites migrated to version 5.[59] This caused overall configuration management problems, at least in part because wire harnesses manufactured using aluminium rather than copper conductors necessitated special design rules including non-standard dimensions and bend radii; these were not easily transferred between versions of the software.[60]

A380 in original Airbus livery

Airbus announced the first delay in June 2005 and notified airlines that deliveries would be delayed by six months.[59] This reduced the total number of planned deliveries by the end of 2009 from about 120 to 90–100. On 13 June 2006, Airbus announced a second delay, with the delivery schedule slipping an additional six to seven months.[61] Although the first delivery was still planned before the end of 2006, deliveries in 2007 would drop to only 9 aircraft, and deliveries by the end of 2009 would be cut to 70–80 aircraft. The announcement caused a 26% drop in the share price of Airbus’ parent, EADS,[62] and led to the departure of EADS CEO Noël Forgeard, Airbus CEO Gustav Humbert, and A380 programme manager Charles Champion.[59][63] On 3 October 2006, upon completion of a review of the A380 program, Airbus CEO Christian Streiff announced a third delay,[59] pushing the first delivery to October 2007, to be followed by 13 deliveries in 2008, 25 in 2009, and the full production rate of 45 aircraft per year in 2010.[64] The delay also increased the earnings shortfall projected by Airbus through 2010 to €4.8 billion.[59][65]

As Airbus prioritised the work on the A380-800 over the A380F,[66] freighter orders were cancelled by FedEx[67][68] and UPS,[69] or converted to A380-800 by Emirates and ILFC.[70] Airbus suspended work on the freighter version, but said it remained on offer,[71] albeit without a service entry date.[72] For the passenger version Airbus negotiated a revised delivery schedule and compensation with the 13 customers, all of which retained their orders with some placing subsequent orders, including Emirates,[73] Singapore Airlines,[74] Qantas,[75] Air France,[76] Qatar Airways,[77] and Korean Air.[78]

On 13 May 2008, Airbus announced reduced deliveries for the years 2008 (12) and 2009 (21).[79] After further manufacturing setbacks, Airbus announced its plan to deliver 14 A380s in 2009, down from the previously revised target of 18.[80] A total of 10 A380s were delivered in 2009.[81] In 2010 Airbus delivered 18 of the expected 20 A380s, due to Rolls-Royce engine availability problems.[82] Airbus planned to deliver “between 20 and 25” A380s in 2011 before ramping up to three a month in 2012.[82] In fact, Airbus delivered 26 units, thus outdoing its predicted output for the first time. As of July 2012, production was 3 aircraft per month. Among the production problems are challenging interiors, interiors being installed sequentially rather than concurrently as in smaller planes, and union/government objections to streamlining.[83]

At the July 2016 Farnborough Airshow Airbus announced that in a “prudent, proactive step,” starting in 2018 it expects to deliver 12 A380 aircraft per year, down from 27 deliveries in 2015. The firm also warned production might slip back into red ink on each aircraft produced at that time, though it anticipates production will remain in the black for 2016 and 2017. “The company will continue to improve the efficiency of its industrial system to achieve breakeven at 20 aircraft in 2017 and targets additional cost reduction initiatives to lower breakeven further.”[84][85] Airbus expects that healthy demand for its other aircraft would allow it to avoid job losses from the cuts.[86][87]

Entry into service

An Emirates A380 on approach to Paris CDG

Nicknamed Superjumbo,[88] the first A380, MSN003, (registered as 9V-SKA) was delivered to Singapore Airlines on 15 October 2007 and entered service on 25 October 2007 with flight number SQ380 between Singapore and Sydney.[15][89] Passengers bought seats in a charity online auction paying between $560 and $100,380.[90] Two months later, Singapore Airlines CEO Chew Choong Seng stated the A380 was performing better than either the airline and Airbus had anticipated, burning 20% less fuel per seat-mile than the airline’s 747-400 fleet.[91] Emirates’ Tim Clark claimed that the A380 has better fuel economy at Mach 0.86 than at 0.83,[92] and that its technical dispatch reliability is at 97%, same as Singapore Airlines. Airbus is committed to reach the industry standard of 98.5%.[93]

A Singapore Airlines A380 at Zürich Airport

Emirates was the second airline to receive the A380 and commenced service between Dubai and New York in August 2008.[94][95] Qantas followed, with flights between Melbourne and Los Angeles in October 2008.[96] By the end of 2008, 890,000 passengers had flown on 2,200 flights.[97]

In February 2009, the one millionth passenger was flown with Singapore Airlines[98] and by May of that year 1,500,000 passengers had flown on 4,200 flights.[99] Air France received its first A380 in October 2009.[100][101] Lufthansa received its first A380 in May 2010.[102] By July 2010, the 31 A380s then in service had transported 6 million passengers on 17,000 flights between 20 international destinations.[103]

Airbus delivered the 100th A380 on 14 March 2013 to Malaysia Airlines.[104] In June 2014, over 65 million passengers had flown the A380,[105] and more than 100 million passengers (averaging 375 per flight) by September 2015, with an availability of 98.5%.[106] In 2014, Emirates stated that their A380 fleet had load factors of 90-100%, and that the popularity of the aircraft with its passengers had not decreased in the past year.[107]

A Qantas A380 taking off

Post-delivery issues

During repairs following the Qantas Flight 32 engine failure incident, cracks were discovered in wing fittings. As a result, the European Aviation Safety Agency issued an Airworthiness Directive in January 2012 which affected 20 A380 aircraft that had accumulated over 1,300 flights.[108] A380s with under 1,800 flight hours were to be inspected within 6 weeks or 84 flights; aircraft with over 1,800 flight hours were to be examined within four days or 14 flights.[109][110][111] Fittings found to be cracked were replaced.[112] On 8 February 2012, the checks were extended to cover all 68 A380 aircraft in operation. The problem is considered to be minor and is not expected to affect operations.[113] EADS acknowledged that the cost of repairs would be over $130 million, to be borne by Airbus. The company said the problem was traced to stress and material used for the fittings.[114] Additionally, major airlines are seeking compensation from Airbus for revenue lost as a result of the cracks and subsequent grounding of fleets.[115] Airbus has switched to a different type of aluminium alloy so aircraft delivered from 2014 onwards should not have this issue.[116]

Airbus is changing about 10% of all doors, as some leak during flight. One occurrence resulted in dropped oxygen masks and an emergency landing. The switch is expected to cost over €100 million. Airbus states that safety is sufficient, as the air pressure pushes the door into the frame.[117][118][119]



The A380 cabin cross section, showing economy class seating in green

The A380 was initially offered in two models, the A380-800 and the A380F. The A380-800’s original configuration carried 555 passengers in a three-class configuration[120] or 853 passengers (538 on the main deck and 315 on the upper deck) in a single-class economy configuration. Then in May 2007, Airbus began marketing a configuration with 30 fewer passengers, (525 total in three classes), traded for 200 nmi (370 km) more range, to better reflect trends in premium class accommodation.[121] The design range for the −800 model is 8,500 nmi (15,700 km);[122] capable of flying from Hong Kong to New York or from Sydney to Istanbul non-stop. The second model, the A380F freighter, would carry 150 tonnes of cargo with a range of 5,600 nmi (10,400 km).[123] The freighter development was put on hold as Airbus prioritised the passenger version and all cargo orders were cancelled. Future variants may include an A380-900 stretch seating about 656 passengers (or up to 960 passengers in an all economy configuration) and an extended-range version with the same passenger capacity as the A380-800.[19]


A Engine Alliance GP7000 engine on the wing of a taxiing Emirates A380-800

The A380 is available with two types of turbofan engines, the Rolls-Royce Trent 900 (variants A380-841, −842 and −843F) or the Engine Alliance GP7000 (A380-861 and −863F). The Trent 900 is a derivative of the Trent 800, and the GP7000 has roots from the GE90 and PW4000. The Trent 900 core is a scaled version of the Trent 500, but incorporates the swept fan technology of the stillborn Trent 8104.[124] The GP7200 has a GE90-derived core and PW4090-derived fan and low-pressure turbo-machinery.[125] Noise reduction was an important requirement in the A380 design, and particularly affects engine design.[126][127] Both engine types allow the aircraft to achieve well under the QC/2 departure and QC/0.5 arrival noise limits under the Quota Count system set by London Heathrow Airport,[128] which is a key destination for the A380.[19] The A380 has received an award for its reduced noise.[129] However, field measurements suggest the approach quota allocation for the A380 may be overly generous compared to the older Boeing 747, but still quieter.[130][131] Rolls-Royce is supporting CAA in understanding the relatively high A380/Trent 900 monitored noise levels.[132]

The A380 was initially planned without thrust reversers, incorporating sufficient braking capacity to do without them.[133] However Airbus elected to equip the two inboard engines with thrust reversers in a late stage of development,[134][135] helping the brakes when the runway is slippery. The two outboard engines do not have reversers, reducing the amount of debris stirred up during landing.[136] The A380 has electrically actuated thrust reversers, giving them better reliability than their pneumatic or hydraulic equivalents, in addition to saving weight.[137]

An Airbus A380 of Singapore Airlines

In 2008, the A380 demonstrated the viability of a synthetic fuel comprising standard jet fuel with a natural-gas-derived component. On 1 February 2008, a three-hour test flight operated between Britain and France, with one of the A380’s four engines using a mix of 60% standard jet kerosene and 40% gas to liquids (GTL) fuel supplied by Shell.[138] The aircraft needed no modifications for the GTL fuel, which was designed to be mixed with normal jet fuel. Sebastien Remy, head of Airbus SAS’s alternative fuel programme, said the GTL used was no cleaner in CO2 terms than standard fuel but contains no sulphur, generating air quality benefits.[139]

The auxiliary power comprises the Auxiliary Power Unit (APU), the electronic control box (ECB), and mounting hardware. The APU in use on the A380 is the PW 980A APU. The APU primarily provides air to power the Analysis Ground Station (AGS) on the ground and to start the engines. The AGS is a semi-automatic analysis system of flight data that helps to optimise management of maintenance and reduce costs. The APU also powers electric generators which provide auxiliary electric power to the aircraft.[140]


Airbus A380, Paris-Le Bourget, 2015

The A380’s wing is sized for a maximum takeoff weight (MTOW) over 650 tonnes to accommodate these future versions, albeit with some internal strengthening required on the A380F freighter.[19][141] The optimal wingspan for this weight is about 90 m (300 ft), but airport restrictions limited it to less than 80 m (260 ft), lowering aspect ratio to 7.8 which reduces fuel efficiency[142] about 10% and increases operating costs a few percent,[143] given that fuel costs constitute about 50% of the cost of long-haul airplane operation.[144] The common wing design approach sacrifices fuel efficiency (due to a weight penalty) on the A380-800 passenger model, but Airbus estimates that the aircraft’s size, coupled with the uses of advanced technology, will provide lower operating costs per passenger than the 747-400 and older 747 variants. The A380 also includes wingtip devices similar to those found on the A310 and A320 to reduce induced drag, thereby increasing fuel efficiency and range.[145]


While most of the fuselage is made of aluminium alloys, composite materials comprise more than 20% of the A380’s airframe.[146] Carbon-fibre reinforced plastic, glass-fibre reinforced plastic and quartz-fibre reinforced plastic are used extensively in wings, fuselage sections (such as the undercarriage and rear end of fuselage), tail surfaces, and doors.[147][148][149] The A380 is the first commercial airliner to have a central wing box made of carbon fibre reinforced plastic. It is also the first to have a smoothly contoured wing cross section. The wings of other commercial airliners are partitioned span-wise into sections. This flowing continuous cross section reduces aerodynamic drag. Thermoplastics are used in the leading edges of the slats.[150] The hybrid fibre metal laminate material GLARE (glass laminate aluminium reinforced epoxy) is used in the upper fuselage and on the stabilisers’ leading edges.[151] This aluminium-glass-fibre laminate is lighter and has better corrosion and impact resistance than conventional aluminium alloys used in aviation.[152] Unlike earlier composite materials, GLARE can be repaired using conventional aluminium repair techniques. The application of GLARE on the A380 has a long history, which shows the complex nature of innovations in the aircraft industry.[153][154]

Newer weldable aluminium alloys are used in the A380’s airframe. This enables the widespread use of laser beam welding manufacturing techniques, eliminating rows of rivets and resulting in a lighter, stronger structure.[155] High-strength aluminium (type 7449)[156] reinforced with carbon fibre was used in the wing brackets of the first 120 A380s to reduce weight, but cracks have been discovered and new sets of the more critical brackets will be made of standard aluminium 7010, increasing weight by 90 kg (198 lb).[157] Repair costs for earlier aircraft are expected to be around €500 million (US$629 million).[158]

It takes 3,600 L (950 US gal) of paint to cover the 3,100 m2 (33,000 sq ft) exterior of an A380.[159] The paint is five layers thick and weighs about 650 kg (1,433 lb).[160]


The A380 employs an integrated modular avionics (IMA) architecture, first used in advanced military aircraft, such as the Lockheed Martin F-22 Raptor, Lockheed Martin F-35 Lightning II,[161] and Dassault Rafale.[162] The main IMA systems on the A380 were developed by the Thales Group.[163] Designed and developed by Airbus, Thales and Diehl Aerospace, the IMA suite was first used on the A380. The suite is a technological innovation, with networked computing modules to support different applications.[163] The data networks use Avionics Full-Duplex Switched Ethernet, an implementation of ARINC 664. These are switched, full-duplex, star-topology and based on 100baseTX fast-Ethernet.[164] This reduces the amount of wiring required and minimises latency.[165]

Port view of front fuselage, with staircase

Front fuselage view of A380

Airbus used similar cockpit layout, procedures and handling characteristics to other Airbus aircraft, reducing crew training costs. The A380 has an improved glass cockpit, using fly-by-wire flight controls linked to side-sticks.[166][167] The cockpit has eight 15 by 20 cm (5.9 by 7.9 in) liquid crystal displays, all physically identical and interchangeable; comprising two primary flight displays, two navigation displays, one engine parameter display, one system display and two multi-function displays. The MFDs were introduced on the A380 to provide an easy-to-use interface to the flight management system—replacing three multifunction control and display units.[168] They include QWERTY keyboards and trackballs, interfacing with a graphical “point-and-click” display system.[169][170]

The Network Systems Server (NSS) is the heart of A380’s paperless cockpit; it eliminates bulky manuals and charts traditionally used.[171][172] The NSS has enough inbuilt robustness to eliminate onboard backup paper documents. The A380’s network and server system stores data and offers electronic documentation, providing a required equipment list, navigation charts, performance calculations, and an aircraft logbook. This is accessed through the MFDs and controlled via the keyboard interface.[165]

A380 flight deck

Power-by-wire flight control actuators have been used for the first time in civil aviation to back up primary hydraulic actuators. Also, during certain manoeuvres they augment the primary actuators.[173] They have self-contained hydraulic and electrical power supplies. Electro-hydrostatic actuators (EHA) are used in the aileron and elevator, electric and hydraulic motors to drive the slats as well as electrical backup hydrostatic actuators (EBHA) for the rudder and some spoilers.[174]

The A380’s 350 bar (35 MPa or 5,000 psi) hydraulic system is a significant difference from the typical 210 bar (21 MPa or 3,000 psi) hydraulics used on most commercial aircraft since the 1940s.[175][176] First used in military aircraft, high-pressure hydraulics reduce the weight and size of pipelines, actuators and related components. The 350 bar pressure is generated by eight de-clutchable hydraulic pumps.[176][177] The hydraulic lines are typically made from titanium; the system features both fuel- and air-cooled heat exchangers. Self-contained electrically powered hydraulic power packs serve as backups for the primary systems, instead of a secondary hydraulic system, saving weight and reducing maintenance.[178]

The A380 uses four 150 kVA variable-frequency electrical generators,[179] eliminating constant-speed drives and improving reliability.[180] The A380 uses aluminium power cables instead of copper for weight reduction. The electrical power system is fully computerised and many contactors and breakers have been replaced by solid-state devices for better performance and increased reliability.[174]

Passenger provisions

Main article: Seat configurations of Airbus A380

Business class on the upper deck of an Emirates A380

The cabin has features to reduce traveller fatigue such as a quieter interior and higher pressurisation than previous generation of aircraft; the A380 is pressurised to the equivalent altitude of 1,520 m (5,000 ft) up to 12,000 m (39,000 ft).[181][182] It has 50% less cabin noise, 50% more cabin area and volume, larger windows, bigger overhead bins, and 60 cm (2.0 ft) extra headroom versus the 747-400.[183][184] Seating options range from 3-room 12 m2 (130 sq ft) “residence” in first class to 11-across in economy.[185] On other aircraft, economy seats range from 41.5 cm (16.3 in) to 52.3 cm (20.6 in) in width,[186] A380 economy seats are up to 48 cm (19 in) wide in a 10-abreast configuration;[187] compared with the 10-abreast configuration on the 747-400 which typically has seats 44.5 cm (17.5 in) wide.[188]

Economy class on the main deck of an Air France A380

The A380’s upper and lower decks are connected by two stairways, fore and aft, wide enough to accommodate two passengers side-by-side; this cabin arrangement allows multiple seat configurations. The maximum certified carrying capacity is 853 passengers in an all-economy-class layout,[46] Airbus lists the “typical” three-class layout as accommodating 525 passengers, with 10 first, 76 business, and 439 economy class seats.[121] Airline configurations range from Korean Air’s 407 passengers to Emirates’ two-class 615 seats for Copenhagen,[189] and average around 480–490 seats.[190][191] The Air Austral’s proposed 840 passenger layout has not come to fruition. The A380’s interior illumination system uses bulbless LEDs in the cabin, cockpit, and cargo decks. The LEDs in the cabin can be altered to create an ambience simulating daylight, night, or intermediate levels.[192] On the outside of the aircraft, HID lighting is used for brighter illumination.

Airbus’s publicity has stressed the comfort and space of the A380 cabin,[193] and advertised onboard relaxation areas such as bars, beauty salons, duty-free shops, and restaurants.[194][195] Proposed amenities resembled those installed on earlier airliners, particularly 1970s wide-body jets,[196] which largely gave way to regular seats for more passenger capacity.[196] Airbus has acknowledged that some cabin proposals were unlikely to be installed,[195] and that it was ultimately the airlines’ decision how to configure the interior.[196] Industry analysts suggested that implementing customisation has slowed the production speeds, and raised costs.[197] Due to delivery delays, Singapore Airlines and Air France debuted their seat designs on different aircraft prior to the A380.[198][199]

Bar on an Emirates A380. There are illuminated Burj Al Arab and Palm Jumeirah motifs on the left and right.

Initial operators typically configured their A380s for three-class service, while adding extra features for passengers in premium cabins. Launch customer Singapore Airlines introduced partly enclosed first class suites on its A380s in 2007, each featuring a leather seat with a separate bed; center suites could be joined to create a double bed.[200][201][202] A year later, Qantas debuted a new first class seat-bed and a sofa lounge at the front of the upper deck on its A380s,[203][204] and in 2009 Air France unveiled an upper deck electronic art gallery.[205] In late 2008, Emirates introduced “shower spas” in first class on its A380s allowing each first class passenger five minutes of hot water,[206][207] drawing on 2.5 tonnes of water although only 60% of it was used.[107] Emirates,[208][209] Etihad Airways and Qatar Airways also have a bar lounge and seating area on the upper deck, while Etihad has enclosed areas for two people each.[210] In addition to lounge areas, some A380 operators have installed amenities consistent with other aircraft in their respective fleets, including self-serve snack bars,[211] premium economy sections,[199] and redesigned business class seating.[198] The Hamburg Aircraft Interiors Expo in April 2015 saw the presentation of an 11-seat row economy cabin for the A380. Airbus is reacting to a changing economy; the recession which began in 2008 saw a drop in market percentage of first class and business seats to six percent and an increase in budget economy travelers. Among other causes is the reluctance of employers to pay for executives to travel in First or Business Class. Airbus’ chief of cabin marketing, Ingo Wuggestzer, told Aviation Week and Space Technology that the standard three class cabin no longer reflected market conditions. The 11 seat row on the A380 is accompanied by similar options on other widebodies: nine across on the Airbus A330 and ten across on the A350.[212]

After Malaysia Airlines did not suceed to sell or lease its 6 aircraft, they will refurbish it for 700 seats and will transfer them to a subsidiary carrier focused on religious pilgrimage flights.[213]

Integration with infrastructure and regulations

Ground operations

An A380 served by three separate jetways at Frankfurt Airport in 2007: two for the main deck and one for the upper deck

Aircraft ground handling of a Lufthansa Airbus A380-841 at Frankfurt Airport, Germany

In the 1990s, aircraft manufacturers were planning to introduce larger planes than the Boeing 747. In a common effort of the International Civil Aviation Organization, ICAO, with manufacturers, airports and its member agencies, the “80-metre box” was created, the airport gates allowing planes up to 80 m (260 ft) wingspan and length to be accommodated.[214] Airbus designed the A380 according to these guidelines,[215][216] and to operate safely on Group V runways and taxiways with a 60 metres (200 ft) loadbearing width.[217] The US FAA initially opposed this,[218][219] then in July 2007, the FAA and EASA agreed to let the A380 operate on 45 m (148 ft) runways without restrictions.[220] The A380-800 is approximately 30% larger in overall size than the 747-400.[221][222] Runway lighting and signage may need changes to provide clearance to the wings and avoid blast damage from the engines. Runways, runway shoulders and taxiway shoulders may be required to be stabilised to reduce the likelihood of foreign object damage caused to (or by) the outboard engines, which are more than 25 m (82 ft) from the centre line of the aircraft,[215][217][223] compared to 21 m (69 ft) for the 747-400,[224] and 747-8.[225]

A380 20-wheel main landing gear

Airbus measured pavement loads using a 540-tonne (595 short tons) ballasted test rig, designed to replicate the landing gear of the A380. The rig was towed over a section of pavement at Airbus’ facilities that had been instrumented with embedded load sensors.[226] It was determined that the pavement of most runways will not need to be reinforced despite the higher weight,[223] as it is distributed on more wheels than in other passenger aircraft with a total of 22 wheels (that is, its ground pressure is lower).[227] The A380 undercarriage consists of four main landing gear legs and one noseleg (a similar layout to the 747), with the two inboard landing gear legs each supporting six wheels.[227]

The A380 requires service vehicles with lifts capable of reaching the upper deck,[228] as well as tractors capable of handling the A380’s maximum ramp weight.[229] When using two jetway bridges the boarding time is 45 min, and when using an extra jetway to the upper deck it is reduced to 34 min.[230] The A380 has an airport turnaround time of 90–110 minutes.[107] In 2008 the A380 test aircraft were used to trial the modifications made to several airports to accommodate the type.[231]

Takeoff and landing separation

File:A380 takeoff.oggPlay media
A video of an A380 taxiing

In 2005, the ICAO recommended that provisional separation criteria for the A380 on takeoff[232] and landing be substantially greater than for the 747 because preliminary flight test data suggested a stronger wake turbulence.[233][234] These criteria were in effect while the ICAO’s wake vortex steering group, with representatives from the JAA, Eurocontrol, the FAA, and Airbus, refined its 3-year study of the issue with additional flight testing. In September 2006, the working group presented its first conclusions to the ICAO.[235][236]

In November 2006, the ICAO issued new interim recommendations. Replacing a blanket 10 nautical miles (19 km) separation for aircraft trailing an A380 during approach, the new distances were 6 nmi (11 km), 8 nmi (15 km) and 10 nmi (19 km) respectively for non-A380 “Heavy”, “Medium”, and “Light” ICAO aircraft categories. These compared with the 4 nmi (7.4 km), 5 nmi (9.3 km) and 6 nmi (11 km) spacing applicable to other “Heavy” aircraft. Another A380 following an A380 should maintain a separation of 4 nmi (7.4 km). On departure behind an A380, non-A380 “Heavy” aircraft are required to wait two minutes, and “Medium”/”Light” aircraft three minutes for time based operations. The ICAO also recommends that pilots append the term “Super” to the aircraft’s callsign when initiating communication with air traffic control, to distinguish the A380 from “Heavy” aircraft.[237]

In August 2008, the ICAO issued revised approach separations of 4 nmi (7.4 km) for Super (another A380), 6 nmi (11 km) for Heavy, 7 nmi (13 km) for medium/small, and 8 nmi (15 km) for light.[238] In November 2008, an incident on a parallel runway during crosswinds made the Australian authorities change procedures for those conditions.[239]

For takeoff, “Light” and “Medium” aircraft must wait 3 minutes behind an A380 takeoff, compared to the standard 2 minutes for takeoffs behind other aircraft types.

Singapore Airlines describe the A380’s landing speed of 130–135 kn (240–250 km/h) as “impressively slow”.[240]


As the A380 fleet grows older, airworthiness authority rules require certain scheduled inspections from approved aircraft tool shops. The increasing fleet size (to about 286 in 2020) cause expected maintenance and modification to cost $6.8 billion for 2015-2020, of which $2.1 billion are for engines. Emirates performed its first 3C-check for 55 days in 2014. During lengthy shop stays, some airlines will use the opportunity to install new interiors.[241]


British Airways Airbus A380 arrives London Heathrow Airport, 2015.

Airbus A380-800 operated by Qatar Airways at London Heathrow Airport apron outside Terminal 4 with a wide range of ground handling equipment around such as aircraft container, pallet loader, ULD, jet air starter, belt loader, pushback tug, catering vehicles and dollies.

Singapore Airlines, Qantas Airways, and Emirates Airbus A380s parked at London Heathrow.

Improved A380-800

In 2010, Airbus announced a new A380 build standard, incorporating a strengthened airframe structure and a 1.5° increase in wing twist. Airbus will also offer, as an option, an improved maximum take-off weight, thus providing a better payload/range performance. Maximum take-off weight is increased by 4 t (8,800 lb), to 573 t (1,263,000 lb) and the range is extended by 100 nautical miles (190 km); this is achieved by reducing flight loads, partly from optimising the fly-by-wire control laws.[242] British Airways and Emirates are the first two customers to have received this new option in 2013.[243] Emirates has asked for an update with new engines for the A380 to be competitive with the 777X around 2020, and Airbus is studying 11-abreast seating.[142]

In 2012 Airbus announced another increase in the A380’s maximum take-off weight to 575 t (1,268,000 lb), a 6 t hike on the initial A380 variant and 2 t higher than the increased-weight proposal of 2010. It will stretch the range by some 150 nautical miles (280 km), taking its capability to around 8,350 nautical miles (15,460 km) at current payloads. The higher-weight version was offered for introduction to service early in 2013.[244]


In November 2007 Airbus top sales executive and chief operating officer John Leahy confirmed plans for an enlarged variant, the A380-900, with more seating space than the A380-800.[245] This version would have a seating capacity for 650 passengers in standard configuration, and approximately 900 passengers in an economy-only configuration.[246] Airlines that had expressed an interest in the −900 included Emirates,[247] Virgin Atlantic,[248] Cathay Pacific,[249] Air France, KLM, Lufthansa,[250] Kingfisher Airlines,[251] and leasing company ILFC.[252] In May 2010, Airbus announced that A380-900 development was postponed, until production of the A380-800 stabilises.[253]

On 11 December 2014 at the annual Airbus Investor Day forum Airbus CEO controversially announced that “We will one day launch an A380neo and one day launch a stretched A380”[254] following speculation sparked by Airbus CFO Harald Wilhelm that Airbus could axe the A380 ahead of its time due to softening demand.[255] On 15 June 2015, John Leahy, Airbus’s chief operating officer for customers, stated Airbus was looking at the A380-900 programme again. Airbus’s newest concept is a stretch of the A380-800 offering 50 seats more, not 100 as originally envisaged. The stretch would be tied to a potential re-engining of the A380-800. According to FlightGlobal, an A380-900 would make better use of the A380’s existing wing.[256]


On 19 July 2015, Airbus CEO Fabrice Brégier stated that the company will build a new version of the A380 featuring new improved wings and new engines.[257] Speculation about the development of a so-called A380neo (neo for new engine option) had been going on for a few months after earlier press releases in 2014,[258] and in 2015 the company was considering whether to end production of the type prior to 2018[259] or develop a new A380 variant. Later it was revealed that Airbus was looking at both the possibility of a longer A380 in line of the previously planned A380-900[260] and a new engine version, i.e. A380neo. It was also revealed by Brégier that the new variant would be ready to enter service by 2020.[261] The engine would most likely be one of a variety of all-new options from Rolls-Royce, ranging from derivatives of the A350’s XWB-84/97 to the future Advance project due at around 2020.[262][263]

On 3 June 2016, Emirates President Tim Clark stated that talks between Emirates and Airbus on the A380neo have “lapsed”.[264]


Airbus originally accepted orders for the freighter version, offering the largest payload capacity of any cargo aircraft in production, exceeded only by the single Antonov An-225 Mriya in service.[265] An aerospace consultant has estimated that the A380F would have 7% better payload and better range than the 747-8F, but also higher trip costs.[266] However, production has been suspended until the A380 production lines have settled with no firm availability date.[66][67][68] In 2015 Airbus removed A380F from the range of freighters on the corporate website.[267] Its maximum payload should be 150 t (330,000 lb) and its range 5,600 nmi (10,400 km).[123]


Prototype at the 2005 Paris Air Show

Airbus A380 at MAKS 2011, Russia

In 2006, industry analysts Philip Lawrence of the Aerospace Research Centre in Bristol and Richard Aboulafia of the consulting Teal Group in Fairfax anticipated 880 and 400 A380 sales respectively by 2025,[25] whereas Airbus and Boeing estimate 1,700 and 700 VLA (very large aircraft; those with more than 400 seats), respectively.[268] According to Lawrence, parallel to the design of the A380, Airbus conducted the most extensive and thorough market analysis of commercial aviation ever undertaken, justifying its VLA plans,[25] while according to Aboulafia, the rise of mid-size aircraft and market fragmentation reduced VLAs to niche market status, making such plans unjustified.[25] The two analysts’ market forecasts differed in the incorporation of spoke-hub and point-to-point models.[25] The difference was illustrated in 2014 when British Airways replaced three B777 flights between London and Los Angeles with two A380, per day.[269]

In contrast, the airline strategy of frequency (offering multiple flights between the same two cities at different times of day) typically relies on smaller aircraft. United Airlines told Reuters that it follows this strategy because it offers business travelers more choices. Moreover, United’s Chief Financial Officer observed that the airline’s Boeing 787 Dreamliners operate at a lower trip cost than the A380. Hence, the A380 “just doesn’t really work for us.”[270][271][272] Operators Air France and China Southern have found that the A380’s capacity is too large for some markets;[273][274] China Southern has faced mounting losses on A380 operations out of its Guangzhou hub,[273] although Emirates’ Tim Clark sees a large potential for Asian A380-users, and criticised Airbus’ marketing efforts.[275] In 2013, Air France withdrew A380 services to Singapore and Montreal and switched to smaller aircraft.[272]

In 2007, Airbus estimated a demand for 1,283 passenger planes in the VLA category for the next 20 years if airport congestion remains at the current level. According to this estimate, demand could reach up to 1,771 VLAs if congestion increases. Most of this demand will be due to the urbanisation and rapid economic growth in Asia.[276] The A380 will be used on relatively few routes, between the most saturated airports; 15 of the world’s 20 biggest airports are saturated.[277] Airbus also estimates a demand for 415 freighters in the category 120-tonne plus. Boeing, which offers the only competition in that class, the 747-8, estimates the demand for passenger VLAs at 590 and that for freighter VLAs at 370 for the period 2007–2026.[278]

At one time the A380 was considered as a potential replacement for the existing Boeing VC-25 serving as Air Force One,[279][280] but in January 2009 EADS declared that they were not going to bid for the contract, as assembling only three planes in the US would not make financial sense.[281]

The break-even for the A380 was initially supposed to be reached by selling 270 units, but due to the delays and the falling exchange rate of the US dollar, it increased to 420 units.[57] In 2010, EADS CFO Hans Peter Ring said that break-even (on the aircraft that are delivered) could be achieved by 2015, despite the delays; there should be around 200 deliveries by that time, on current projections.[282][283] In 2012, Airbus clarified that in 2015, production costs to build the aircraft would be less than the sales price.[83]

As of 2016 the list price of an A380 is US$432.6 million.[284] Negotiated discounts made the actual prices much lower, and industry experts questioned whether the A380 project would ever pay for itself.[83] The first aircraft was sold-and-leased-back by Singapore Airlines in 2007 for $197 million.[285]

On 11 December 2014, after slower than expected orders for the aircraft in 2014, Harald Wilhelm, the company’s Chief Finance Officer, voiced the possibility to end the program in 2018. His statement was met by protests from customers and a fall in share prices.[286][287][288] Airbus responded to the protests by playing down the possibility the A380 would be abandoned, instead emphasizing that enhancing the airplane was a likelier scenario.[289] On 22 December 2014, CEO Fabrice Brégier ruled out the cancellation of the A380 program, stating that it will break even in 2015[290] but also that the A380 was introduced a decade too early.[291] While no longer losing money on each plane sold, Airbus admits that the company will never recoup the $25 billion investment it made in the project.[292]

As of mid-2015, several airlines have expressed their interest in selling their aircraft, partially coinciding with expiring lease contracts for the aircraft. Several A380 which are in service have been offered for lease to other airlines. The suggestion has prompted concerns on the potential for new sales for Airbus, although these were dismissed by Airbus COO John Leahy stated that “Used A380s do not compete with new A380s”, stating that the second-hand market is more interesting for parties otherwise looking to buy smaller aircraft such as the Boeing 777.[293]

On 15 June 2015, Reuters reported that Airbus was discussing a stretched version of the A380 with a half dozen customers. This aircraft, which could also feature new engines, would accommodate an additional fifty passengers. Were this “A380neo” to be built, it would be delivered to customers sometime in 2020 or 2021.[294] On 9 July 2015, Business Insider reported that Airbus had filed a patent application for an A380 “combi” which would offer the flexibility of not only carrying both passengers and cargo, but being rapidly reconfigurable to expand or contract the cargo area and passenger area as needed for a given flight.[295]

An A380’s hourly cost is about $26,000, or around $50 per seat hour, which compares to $44 per seat hour for a Boeing 777-300ER, and $90 per seat hour for a Boeing 747-400 as of November 2015.[296]

Orders and deliveries

Main article: List of Airbus A380 orders and deliveries

A Korean Air Airbus A380 taking off from Hamburg Airport in 2011

A Qatar Airways A380 on final approach to London Heathrow Airport

A Malaysia Airlines Airbus A380

Nineteen customers have ordered the A380. Total orders for the A380 stand at 319 as of August 2016.[2] The biggest customer is Emirates, which has ordered or committed to order a total of 142 A380s as of 30 September 2016.[2][297] One VIP order was made in 2007[298] but later cancelled by Airbus.[299] The A380F version totalled 27 orders before they were either cancelled (20) or converted to A380-800 (7), following the production delay and the subsequent suspension of the freighter programme.

Delivery takes place in Hamburg for customers from Europe and the Middle East and in Toulouse for customers from the rest of the world.[300] EADS explained that deliveries in 2013 were to be slowed temporarily to accommodate replacement of the wing rib brackets where cracks were detected earlier in the existing fleet.[301]

In hopes of raising the number of orders placed, Airbus announced ‘attractable discounts’ to airlines who placed large orders for the A380. Emirates soon after, ordered 50 aircraft, totalling $20.75 billion. Airbus gave a $2.75 billion total discount, equal to $55 million in savings per aircraft for Emirates.[302]

Airbus says that some A380s may not be delivered to customers or even built. This decision came when Airbus had not met the ‘Accord and Satisfaction’ for three already built aircraft for an undisclosed Japanese airline. “Without referring to any specific airline, I can assure you that we have cases where airlines are in the order backlog but not in the production plan,” chief executive officer Tom Enders said in August 2014 during a conference call to discuss earnings with Bloomberg. “We are watching the situation carefully, and know about the strengths and weaknesses of customers.” Among customers that have ordered superjumbos yet remain undecided about actually taking them is Virgin Atlantic, with six units on the order book. Qantas had also planned to top up its existing fleet by as many as eight airplanes, an expansion that has been thrown into doubt amid a cost-cutting drive. Amedeo, an aircraft lessor that ordered 20 A380s, has yet to find a single client for the jet.[303]

A380 firm net orders and deliveries
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total
Net orders A380-800 78 34 10 10 24 33 9 4 32 19 9 42 13 2 319
A380F 7 10 10 -17 -10
Deliveries A380-800 1 12 10 18 26 30 25 30 27 16 195

Cumulative orders and deliveries

Data from Airbus through the end of September 2016.[2][304]




There were 195 aircraft in service with 13 operators as of 30 September 2016.[305]

Emirates is the largest A380 operator with 83 aircraft in service as of September 2016.[305]

Etihad Airways’ first Airbus A380 taking off from London-Heathrow Airport
  • Singapore Airlines first service on 25 October 2007[89]
  • Emirates first service on 1 August 2008[95]
  • Qantas first service on 20 October 2008[96]
  • Air France first service on 20 November 2009[306]
  • Lufthansa first service on 6 June 2010[307]
  • Korean Air first service on 17 June 2011[308]
  • China Southern Airlines first service on 17 October 2011[309][310]
  • Malaysia Airlines first service on 1 July 2012[311]
  • Thai Airways first service on 6 October 2012.[312]
  • British Airways first service on 2 August 2013.[313]
  • Asiana Airlines first service on 13 June 2014[314]
  • Qatar Airways first service on 10 October 2014[315]
  • Etihad Airways first service on 27 December 2014[316]

Notable routes

The shortest regular commercial route that the A380 flies is from Dubai International Airport to Kuwait International Airport (861 km or 535 miles great circle distance) with Emirates,[317] although Air France briefly operated the A380 on the much shorter Paris-Charles de Gaulle to London-Heathrow route (344 km or 214 miles) in mid-2010.[318] The longest A380 route — and the third longest non-stop commercial flight in the world — is Qantas’ service from Sydney International Airport to Dallas-Fort Worth International Airport at 13,804 kilometres (8,577 mi).[319][320]

Incidents and accidents

The A380 has been involved in one aviation occurrence and no hull loss accidents with no fatalities as of January 2016, according to the Aviation Safety Network.[321][322]

On 4 November 2010, Qantas Flight 32, en route from Singapore Changi Airport to Sydney Airport, suffered an uncontained engine failure, resulting in a series of related problems, and forcing the flight to return to Singapore. There were no injuries to the passengers, crew or people on the ground despite debris falling onto the Indonesian island of Batam.[323] The A380 was damaged sufficiently for the event to be classified as an accident.[324] Qantas subsequently grounded all of its A380s that day subject to an internal investigation taken in conjunction with the engine manufacturer Rolls-Royce plc. A380s powered by Engine Alliance GP7000 were unaffected but operators of Rolls-Royce Trent 900-powered A380s were affected. Investigators determined that an oil leak, caused by a defective oil supply pipe, led to an engine fire and subsequent uncontained engine failure.[325] Repairs cost an estimated A$139 million (~US$145M).[326] As other Rolls-Royce Trent 900 engines also showed problems with the same oil leak, Rolls-Royce ordered many engines to be changed, including about half of the engines in the Qantas A380 fleet.[327] During the airplane’s repair, cracks were discovered in wing structural fittings which also resulted in mandatory inspections of all A380s and subsequent design changes.[108]


Comparison between four of the largest aircraft:

  Hughes H-4 Hercules
  Antonov An-225 Mriya
  Airbus A380-800
  Boeing 747-8
Layout of A380-800, 519 seat configuration (331 lower, 188 upper)
Variant A380-800[122]
Cockpit crew Two
Typical seating 544 (4-class)
Exit Limit 868[328]
Length overall 72.72 m (238 ft 7 in)
Wingspan 79.75 m (261 ft 8 in)
Height 24.09 m (79 ft 0 in)
Wheelbase 31.88 m (104 ft 7 in)
Wheel track 12.46 m (40 ft 11 in), 14.34 m (47 ft 1 in) total width[215]
Outside fuselage
Width: 7.14 m (23 ft 5 in)
Height: 8.41 m (27 ft 7 in)
cabin width
6.50 m (21 ft 4 in) main deck
5.80 m (19 ft 0 in) upper deck
Cabin length 49.9 m (163 ft 9 in) main deck
44.93 m (147 ft 5 in) upper deck[verification needed]
Wing area 845 m2 (9,100 sq ft)[329]
Aspect ratio 7.53
Wing sweep 33.5°[329]
Maximum ramp weight 577 t (1,272,000 lb)
Maximum take-off weight 575 t (1,268,000 lb)
Max. landing weight 394 t (869,000 lb)
Max. zero fuel weight 369 t (814,000 lb)
Operating empty weight 276.8 t (610,000 lb)[330]
Max. structural payload 84 t (185,000 lb)[215]
Maximum cargo volume 184 m3 (6,500 cu ft)
Maximum operating speed Mach 0.89 (587 mph; 945 km/h)
Maximum design speed Mach 0.96 (634 mph; 1,020 km/h)[a][331]
Cruise speed Mach 0.85 (561 mph; 903 km/h)[136]
Take off (MTOW, SL, ISA) 3,000 m (9,800 ft)[215]
Landing speed 130 kn (240 km/h)[136]
Range 15,200 km / 8,200 nmi
Service ceiling 13,100 m (43,000 ft)[332]
Max. fuel capacity 320,000 L / 84,600 USgal
Engines (4 ×) Engine Alliance GP7200 / Rolls-Royce Trent 900
Thrust (4 ×) 311 kN (70,000 lbf)
type certificate[328]
Variant Certification Engine Thrust
A380-841 12 December 2006 Trent 970-84/970B-84 348.31 kN
A380-842 12 December 2006 Trent 972-84/972B-84 356.81 kN
A380-861 14 December 2007 Engine Alliance GP7270 332.44 kN